192
Views
28
CrossRef citations to date
0
Altmetric
Original Article

Modelling heat-induced radiosensitization: clinical implications

, , , &
Pages 201-212 | Received 14 Apr 2003, Accepted 17 Jul 2003, Published online: 09 Jul 2009
 

Abstract

Clinically achievable minimum tumour temperatures are in the order of about 41°C. Therefore, it is important to evaluate mechanisms by which temperatures in this range might enhance cytotoxicity. Previous in vitro studies have demonstrated that 1–4 h (depending on the sequencing of modalities) of heating at 41°C produces substantial heat-induced radiosensitization with little or no cell killing by heat alone. The increased radiation sensitivity is best modelled as a change in the single hit, α, parameter (with no significant effect on the two-hit parameter, β) of the cell survival curve. The implications of heat-induced radiosensitization being mediated by a change in α on the traditional thermal enhancement ratio (for various radiation doses/fraction and α/β) are reviewed. Response rates for a cohort of 60 patients enrolled on a prospective thermal dose escalation study are modelled assuming that the thermal dose dependence of heat-induced radiosensitization is modulated by a heat-induced ▵α. The clinical data are fitted with ▵α about 0.05–0.1 Gy−1. Randomized trials reported in the literature and the implication for the design of future prospective trials are reviewed in light of these observations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.