350
Views
4
CrossRef citations to date
0
Altmetric
Retina

Prolonged Melanopsin-based Photoresponses Depend in Part on RPE65 and Cellular Retinaldehyde-binding Protein (CRALBP)

, , &
Pages 515-523 | Received 18 Jun 2020, Accepted 23 Aug 2020, Published online: 07 Sep 2020
 

ABSTRACT

Purpose

Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and can signal light continuously for many hours. Melanopsin is excited when its chromophore 11-cis-retinal absorbs a photon and becomes all-trans-retinal, which must be reisomerized to 11-cis-retinal to regenerate photoexcitable melanopsin. Due to the great distance separating ipRGCs from the retinal pigment epithelium (RPE) whose retinoid cycle produces 11-cis-retinal, ipRGCs had been assumed to regenerate all melanopsin molecules autonomously. Surprisingly, we previously found that pharmacologically inhibiting the retinoid cycle rendered melanopsin-based responses to prolonged illumination less sustained, suggesting that the RPE may supply retinoids to help ipRGCs regenerate melanopsin during extended photostimulation. However, the specificity of those drugs is unclear. Here, we reexamined the role of the retinoid cycle, and tested whether the RPE-to-ipRGC transport of retinoids utilizes cellular retinaldehyde-binding protein (CRALBP), present throughout the RPE and Müller glia.

Methods

To measure melanopsin-mediated photoresponses in isolation, all animals were 8- to 12-month-old rod/cone-degenerate mice. We genetically knocked out RPE-specific 65 kDa protein (RPE65), a critical enzyme in the retinoid cycle. We also knocked out the CRALBP gene rlbp1 mainly in Foxg1-expressing Müller cells. We obtained multielectrode-array recordings from ipRGCs in a novel RPE-attached mouse retina preparation, and imaged pupillary light reflexes in vivo.

Results

Melanopsin-based ipRGC responses to prolonged light became less tonic in both knockout lines, and pupillary light reflexes were also less sustained in RPE65-knockout than control mice.

Conclusions

These results confirm that ipRGCs rely partly on the retinoid cycle to continuously regenerate melanopsin during prolonged photostimulation, and suggest that CRALBP in Müller glia likely transports 11-cis-retinal from the RPE to ipRGCs – this is the first proposed functional role for CRALBP in the inner retina.

Additional information

Funding

This work was supported by the Alliance for Vision Research; National Eye Institute [EY007003, EY023660].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.