276
Views
50
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of the Dissolution and Permeation Rates of Meloxicam by Formation of Its Freeze-dried Solid Dispersions in Polyvinylpyrrolidone K-30

&
Pages 141-150 | Published online: 25 Sep 2008
 

ABSTRACT

Freeze-drying (FD) and solvent evaporation (SE) were used to prepare solid dispersions (SDs) of meloxicam (MX) in polyvinylpyrrolidone K-30 (PVP). The SDs were prepared at different ratios, namely 1:1, 1:3, and 1:5 MX:PVP weight ratio. Differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), and x-ray powder diffractometry (XPD) were utilized to characterize the physicochemical properties of the SDs. Meloxicam (MX) in the solid dispersions appeared with less crystallinity form and was present in a complete amorphous form at higher PVP ratio. Dissolution rates of MX as a pure drug, physical mixtures (PMs), and SDs indicated a marked increase of the dissolution rate of MX in presence of PVP. The increase in the dissolution rate was dependent on the ratio of PVP and the method of preparation. In addition, the permeability of the drug through standard cellophane membrane and hairless mouse skin was also evaluated. The permeation rate of MX was significantly increased in the case of SDs and was dependent on the ratio of PVP. The results were primarily due to increase wettability, the solubilization of the drug by the carrier, and formation of MX amorphous form.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.