221
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Development of rapidly dissolving pellets within the Quality by Design approach

, &
Pages 770-779 | Received 04 May 2016, Accepted 30 Jun 2016, Published online: 13 Sep 2016
 

Abstract

The purpose of this study was the development of novel, fast disintegrating, effervescent pellets by employing the direct pelletization technique as a single step process. In line with the Quality by Design (QbD) regulatory framework, statistical experimental design was extensively applied to correlate significant formulation and process variables with the critical quality attributes of the product. Pellets were studied with regards to sphericity, size and size distribution. In contrast to the existing multiparticulate platforms, this development integrated only water-soluble excipients to facilitate the multifunctional use of the final dosage form. The application of a screening fractional factorial design augmented to a full factorial design set the roadmap for the rational selection of the composition and process parameters, revealing in parallel the positive contribution of the powder feeder on the CQAs, when the critical process and formulation factors were properly adjusted. The response surface methodology was exploited for the final process optimization phase, which allowed the construction of appropriate mathematical models connecting the input variables and the CQAs under study. The implementation of the desirability function, lead to the optimum formulation and process settings for the production of pellets with narrow size distribution and geometric mean diameter of approximately 800 μm. In conclusion, using a lean approach supported by design of experiments (DoE) techniques within the QbD framework, a novel multifunctional formulation platform has been developed.

Disclosure statement

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.