246
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication and evaluation of fast disintegrating pellets of cilostazol

ORCID Icon, , &
Pages 1927-1946 | Received 30 May 2020, Accepted 14 Sep 2020, Published online: 07 Oct 2020
 

Abstract

The present study was designed to formulate and develop fast disintegrating pellets of poorly soluble model drug (cilostazol) by reducing the proportion of micro-crystalline cellulose with pre-gelatinized starch (PGS), lactose and chitosan. The bioavailability enhancement of a model drug was achieved by preparing inclusion complex with Captisol® (Sulfobutyl Ether β cyclodextrin – SBE-β-CD). Extrusion-spheronization technique was used to formulate pellets. Placket-Burman design was used for the initial screening of most significant factors such as screen size (mm), ratio of micro crystalline cellulose: PGS + lactose + chitosan and % of HPMC which affects pellet properties. The inclusion complex of drug and Captisol® (SBE-β-CD) was prepared by Solvent Evaporation method and were incorporated into pellets in a predefined proportion. Formulation was optimized by using 32 full factorial design, the optimized batch was selected on the basis of dependent variables such as % yield, pellet size, disintegration time and % Cumulative drug release (%CDR), the obtained results were 87.15%, 0.75 mm, 13 min and 91.024% respectively. Differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR) study revealed no significant interaction between drug and polymer. Scanning electron microscopy (SEM) confirmed uniform and spherical shaped pellets having pores on the surface which facilitates wicking action and fast disintegrating property of pellets. A design space was constructed to meet the desirable target and optimized batch. The scope of study can further extended to hydrophobic molecules which may useful due to rapid disintegration and enhanced dissolution rate.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.