122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeting new N-furfurylated 4-chlorophenyl-1,2,4-triazolepropionamide hybrids as potential 15-lipoxygenase inhibitors supported with in vitro and in silico studies

, , , , , , ORCID Icon, , & show all
Pages 5166-5182 | Received 24 Jan 2022, Accepted 17 May 2022, Published online: 14 Jun 2022
 

Abstract

Lipoxygenases (LOXs) are a group of enzymes that catalyze the oxidation of polyunsaturated fatty acids and initiate the biosynthesis of secondary metabolites that are involved to control inflammation. In search of new and more potent LOX inhibitors, a series of new 3-(5-(4-chlorophenyl)-4-(2-furylmethyl)-1,2,4-triazole hybrids was prepared and screened for its LOX inhibitory potential. 4-Chlorobenzoic acid (a) was metamorphosed into N-furfuryl-5-(4-chlorophenyl)-4-(2-furylmethyl)-1,2,4-triazole (4) via intermediates like benzoate (1), hydrazide (2) and semicarbazide (3). Finally, triazole (4) was fused with propionamides (6a–o) and transformed it into the aimed derivatives (7a–o). The structural interpretations of the prepared derivatives (7a–o) were accomplished via FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry. The inhibitory potency of the compounds against soybean 15-LOX was determined by in vitro assay using chemiluminescence method. Compounds 7a and 7f exhibited potent LOX inhibitory profiles with IC50 21.83 ± 0.56 and 25.72 ± 0.51 µM, whereas 7d and 7e showed comparable inhibitory potential with IC50 values of 34.52 ± 0.39 and 39.12 ± 0.46 µM, respectively. Compounds 7a, 7f, 7d and 7e exhibited 65.58 ± 1.4%, 54.72 ± 1.3%, 58.52 ± 1.2% and 63.56 ± 1.4% blood mononuclear cells viability, respectively. Density functional theory and molecular docking studies further strengthened the studies of the synthesized compounds and these derivatives perceived to be potential ‘lead’ compounds in drug discovery as anti-LOX.

Communicated by Ramaswamy H. Sarma

Acknowledgment

Prof. N. Riaz is thankful to Prof. Dr. Harald Gross, Institute of Pharmaceutical Biology, University of Tuebingen, Tuebingen, Germany for providing NMR and Mass analysis facility. Thanks are due to the Higher Education Commission, Pakistan, for funding the NRPU Project No. 4950 to M. Ashraf wherein W. Shahid worked as research assistant.

Disclosure statement

There is no conflict of interest amongst the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.