678
Views
65
CrossRef citations to date
0
Altmetric
Original

Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis

Pages 5-20 | Published online: 07 Jul 2009
 

Abstract

The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ∼24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N‐acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed.

View correction statement:
Erratum

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.