Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 35, 2018 - Issue 5
233
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Temporal expression of clock genes in central and peripheral tissues of spotted munia under varying light conditions: Evidence for circadian regulation of daily physiology in a non-photoperiodic circannual songbird species

, , &
Pages 617-632 | Received 08 Nov 2017, Accepted 27 Dec 2017, Published online: 25 Jan 2018
 

ABSTRACT

We investigated if the duration and/or frequency of the light period affect 24-h rhythm of circadian clock genes in central and peripheral tissues of a non-photoperiodic songbird, the spotted munia (Lonchura punctulata), in which a circannual rhythm regulates the reproductive cycle. We monitored activity–rest pattern and measured 24-h mRNA oscillation of core clock (Bmal1, Clock, Per2, Cry1 and Cry2) and clock-controlled (E4bp4, Rorα and Rev-erbα) genes in the hypothalamus, retina, liver and gut of spotted munia subjected to an aberrant light–dark (LD) cycle (3.5L:3.5D; T7, T = period length of LD cycle) and continuous light (LL, 24L:0D), with controls on 24-h LD cycle (T24, 12L:12D). Munia exhibited rhythmic activity–rest pattern with period matched to T7 or T24 under an LD cycle and were arrhythmic with a scattered activity pattern and higher activity duration under LL. At the transcriptional level, both clock and clock-controlled genes showed a significant 24-h rhythm in all four tissues (except Clock in the liver) under 12L:12D, suggesting a conserved tissue-level circadian time generation in spotted munia. An exposure to 3.5L:3.5D or LL induced arrhythmicity in transcriptional oscillation of all eight genes in the hypothalamus (except Rev-erbα) and liver (except Bmal1 and Rev-erbα under T7 and Cry1 under LL). In the retina, however, all genes showed arrhythmic 24-h mRNA expression under LL, but not under T7 (except in E4bp4 and Rorα). Interestingly, unlike in the liver, Bmal1, Per2, Cry1, Rorα and Rev-erbα mRNA expressions were rhythmic in the gut under both T7 (except Rorα) and LL conditions. These results showed variable relationship of internal circadian clocks with the external light environment and suggested a weak coupling of circadian clocks between the central (hypothalamus and retina) and peripheral (liver and gut) tissues. We suggest tissue-level circadian clock regulation of daily physiology and behavior in the spotted munia.

Declaration of interest

The authors have no conflict of interest. The authors alone are responsible for the content and writing of the paper. This study received generous funding from the Science and Engineering Research Board through regular and IRHPA research grants to VK and SR and DST-DU PURSE and DU R&D research grant to VK. NA and IM were supported by a Senior Research Fellowship from the University Grants Commission, New Delhi, and Council of Scientific and Industrial Research, New Delhi, respectively.

Supplemental data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.