Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 35, 2018 - Issue 8
411
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat

, , &
Pages 1077-1087 | Received 30 Jan 2018, Accepted 23 Mar 2018, Published online: 16 Apr 2018
 

ABSTRACT

Obesity during pregnancy causes adverse maternal and fetal health outcomes and programs offspring for adult-onset diseases, including cardiovascular disease. Obesity also disrupts core body temperature (Tc) regulation in nonpregnant rodents; however, it is unknown whether obesity alters normal maternal Tc adaptations to pregnancy. Since Tc is influenced by the circadian system, and both obesity and pregnancy alter circadian biology, it was hypothesized that obesity disrupts the normal rhythmic patterns of Tc before and during gestation. Obesity was induced by cafeteria (CAF) feeding in female Wistar rats for 8 weeks prior to and during gestation, whereas control (CON) animals had free access to chow. Intraperitoneal temperature loggers measured daily Tc profiles throughout the study, while maternal body composition and leptin levels were assessed near term. Daily temperature profiles were examined for rhythmic features (mesor, amplitude and acrophase) by cosine regression analysis. CAF animals exhibited increased fat mass (93%) and associated hyperleptinemia (3.2-fold increase) compared to CON animals. CAF consumption reduced the average Tc (by up to 0.29°C) across the estrous cycle and most of pregnancy; however, Tc for CAF and CON animals converged toward the end of gestation. Obesity reduced the amplitude of Tc rhythms at estrus and proestrus and on day 8 of pregnancy, but increased the amplitude at day 20 of pregnancy. Photoperiod analysis revealed that obesity reduced Tc exclusively in the light period during pre-pregnancy but only during the dark period in late gestation. In conclusion, obesity alters rhythmic Tc profiles and reduces the magnitude of the Tc decline late in rat gestation, which may have implications for maternal health and fetal development.

Declaration of interest

The authors declare no conflict of interest. This research did not receive any specific funding in the public, commercial, or not-for-profit sector.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.