Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
176
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of CDK4/6 Inhibitors on Tumor Immune Microenvironment

, , , , &
Pages 437-449 | Published online: 05 Feb 2024
 

ABSTRACT

Cancer is an abnormal proliferation of cells that is stimulated by cyclin-dependent kinases (CDKs) and defective cell cycle regulation. The essential agent that drive the cell cycle, CDK4/6, would be activated by proliferative signals. Activated CDK4/6 results in the phosphorylation of the neuroblastoma protein (RB) and the release of the transcription factor E2F, which promotes the cell cycle progression. CDK4/6 inhibitor (CDK4/6i) has been currently a research focus, which inhibits the CDK4/6-RB-E2F axis, thereby reducing the cell cycle transition from G1 to S phase and mediating the cell cycle arrest. This action helps achieve an anti-tumor effect. Recent research has demonstrated that CDK4/6i, in addition to contributing to cell cycle arrest, is also essential for the interaction between the tumor cells and the host immune system, i.e., activating the immune system, strengthening the tumor antigen presentation, and reducing the number of regulatory T cells (Treg). Additionally, CDK4/6i would elevate the level of PD-L1, an immunosuppressive factor, in tumor cells, and CDK4/6i in combination with anti-PD-L1 therapy would more effectively reduce the tumor growth. Our results showed that CDK4/6i caused autophagy and senescence in tumor cells. Herein, the impact of CDK4/6i on the immune microenvironment of malignant tumors was mainly focused, as well as their interaction with immune checkpoint inhibitors in affecting anti-tumor immunity.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by the Shandong Provincial Natural Science Foundation Youth Project, [ZR2022QH236], UGP2 promotes ER-positive breast cancer metastasis by activating STAT3 signaling pathway and regulating MGLL expression.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,480.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.