151
Views
22
CrossRef citations to date
0
Altmetric
Original

Impaired function of dendritic cells in alymphoplasia (aly/aly) mice for expansion of CD25+CD4+ regulatory T cells

, , , , , & show all
Pages 445-453 | Published online: 07 Jul 2009
 

Abstract

Alymphoplasia (aly/aly) mice are from a naturally occurring strain with a mutation in nuclear factor-kappa B inducing kinase (NIK). The NIK mutation causes disruption of the architecture of the thymus and spleen and aly/aly mice show decreased numbers of CD25+CD4+T cells in the spleen. For the expansion of CD25+CD4+T cells, interactions between dendritic cells (DCs) and CD25+CD4+ regulatory T cells are necessary. We investigated the ability of DCs to induce expansion of CD25+CD4+T cells. We found that DCs are reduced in the spleen of aly/aly mice, and showed low expressions of CD80, CD86 and MHC class II molecules on the surface. DCs from aly/aly mice showed decreased ability to present ovalbumin (OVA) to T cells from OVA specific TCR transgenic mice, and a decreased ability for alloantigen presentation. Further, DCs showed a decreased ability to induce expansion of CD25+CD4+T cells in vitro. Our results suggested that the impairment of DCs in aly/aly mice is responsible, at least in part, for the decreased numbers of CD25+CD4+T cells in the periphery of aly/aly mice.

Acknowledgements

We thank Ms. Haruka Fujimaki for providing helpful advice and discussion. This work was supported by grants from Yokohama City (16000098-0).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.