337
Views
72
CrossRef citations to date
0
Altmetric
Research Article

Amentoflavone Inhibits Experimental Tumor Metastasis Through a Regulatory Mechanism Involving MMP-2, MMP-9, Prolyl Hydroxylase, Lysyl Oxidase, VEGF, ERK-1, ERK-2, STAT-1, nm23 and Cytokines in Lung Tissues of C57BL/6 Mice

&
Pages 711-727 | Published online: 20 Oct 2008
 

Abstract

Amentoflavone has been shown to inhibit tumor metastasis in vivo, but its mechanism of action remains unclear. Here, C57BL/6 mice were injected once with B16F-10 melanoma cells via tail vein followed by amentoflavone treatment (50mg/kg BW) for 10 consecutive days. Twenty-one days after tumor injection, animals were euthanized, and tumor metastasis was found to confine in the lungs. As compared with the tumor controls, amentoflavone treatment significantly lowered the number of lung nodules (p<0.001). Amentoflavone treatment markedly decreased the mRNA expression of MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, ERK-1, ERK-2, TNF-α, IL-1β, IL-6, and GM-CSF in lung tissues. However, amentoflavone treatment increased the mRNA expression of STAT-1 and nm23 in lung tissues. Also in vitro studies indicate that amentoflavone treatment inhibits tumor cell invasion and migration. These results show that amentoflavone treatment reduces experimental tumor metastasis and suggest that such an action is associated with attenuation of tumor invasion, proliferation and angiogenesis.

ACKNOWLEDGMENT

We thank Dr. Ramadasan Kuttan, Director of Amala Cancer Research Centre, for his kind support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.