Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 19, 2007 - Issue 2
160
Views
28
CrossRef citations to date
0
Altmetric
Original

Effects of Nitrogen Dioxide on the Expression of Intercellular Adhesion Molecule-1, Neutrophil Adhesion, and Cytotoxicity: Studies in Human Bronchial Epithelial Cells

, &
Pages 181-194 | Received 30 Apr 2006, Accepted 06 Sep 2006, Published online: 07 Jul 2010
 

Abstract

Nitrogen Dioxide (NO2) is a product of high-temperature combustion and an environmental oxidant of concern. We have recently reported that early changes in NO2-exposed human bronchial epithelial cells are causally linked to increased generation of proinflammatory mediators, such as nitric oxide/nitrite and cytokines like interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-8. The objective of the present in vitro study was to further delineate the cellular mechanisms of NO2-mediated toxicity, and to define the nature of cell death that ensues upon exposure of normal human bronchial epithelial (NHBE) cells to a brief high dose of NO2. Our results demonstrate that the NHBE cells undergo apoptotic cell death during the early post-NO2 period, but this is independent of any significant increase in caspase-3 activity. However, necrotic cell death was more prevalent at later time intervals. Interestingly, an increased expression of HO-1, a redox-sensitive stress protein, was observed in NO2-exposed NHBE cells at 24 h. Since neutrophils (PMNs) play an active role in acute lung inflammation and resultant oxidative injury, we also investigated changes in human PMN–NHBE cell interactions. As compared to normal cells, increased adhesion of PMNs to NO2-exposed cells was observed, which resulted in an increased NHBE cell death. The latter was also increased in the presence of IL-8 and TNF-α + interferon (IFN)-γ, which correlated with upregulation of intercellular adhesion molecule-1 (ICAM-1). Our results confirmed an involvement of nitric oxide (NO) in NO2-induced cytotoxicity. By using NO synthase inhibitors such as L-NAME and 3-aminoguanidine (AG), a significant decrease in cell death, PMN adhesion, and ICAM-1 expression was observed. These findings indicate a role for the L-arginine/NO synthase pathway in the observed NO2-mediated toxicity in NHBE cells. Therapeutic strategies aimed at controlling excess generation of NO and/or inflammatory cytokines may be useful in alleviating NO2-mediated adverse effects on the bronchial epithelium.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.