Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 31, 2019 - Issue 9-10
225
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of an aerosol generation system to assess inhalation risks of aerosolized nano-enabled consumer products

, , , , ORCID Icon & ORCID Icon
Pages 357-367 | Received 20 May 2019, Accepted 14 Oct 2019, Published online: 29 Nov 2019
 

Abstract

Objective: The aerosolization of common nano-enabled consumer products such as cosmetics has significantly increased engineered nanoparticle inhalation risks. While several studies have investigated the impact of cosmetic dermal exposures, inhalation hazards of aerosolized cosmetics are much less known but could pose considerable harm to users due to potential co-exposure of nanoparticles and other product components.

Materials and Methods: In this study, we developed a fully automated aerosol generation system to examine the aerosol properties of four aerosolized nano-enabled cosmetics using real-time monitoring and sampling instrumentation. Physicochemical characterization of aerosols was conducted using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM-EDX). Characterization and calibration of animal exposure pods coupled to the system were also performed by measuring and comparing particle concentrations between pods.

Results and Discussion: Results show peak emissions are shade dependent and varied between 12,000–22,000 particles/cm3 with modal diameters ranging from 36 nm–1.3 µm. SEM-EDX analysis determined that the original products and collected aerosols have similar morphological features consisting of micron-sized particles decorated with nanoparticles and crystalline structures. Mean total particle concentration in pods at 5 and 10 mg/m3 target levels were 2.22E + 05 #/cm3 and 4.33E + 05 #/cm3, respectively, with <10% variability between pods.

Conclusions: The fully automated exposure platform described herein provides reproducible aerosol generation, conforms to recommended guidelines on chemical testing, and therefore is suitable for future in vivo toxicological assessments to examine potential respiratory hazards of aerosolized nano-enabled consumer products.

Acknowledgments

The authors would like to thank Walter McKinney for input and troubleshooting assistance regarding the AGS. SEM-EDX work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542174).

Disclosure statement

W.T. Goldsmith was financially compensated by IEStechno, which developed the AGS described in this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.