181
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Differential effects of epidermal growth factor (EGF) receptor ligands on receptor binding, downstream signalling pathways and DNA synthesis in hepatocytes

, , , , , & show all
Pages 239-248 | Received 22 Dec 2017, Accepted 13 Mar 2018, Published online: 27 Mar 2018
 

Abstract

Hepatocytes are responsive to mitogenic effects of several ligands acting via EGFR. Studying primary cultures of rat hepatocytes, we found that, as compared to EGF, HB-EGF had a markedly higher affinity of the EGFR, while AR and TGFα had lower affinity. HB-EGF was also more potent compared to the other growth factors regarding phosphorylation of EGFR, Shc, ERK1/2 and Akt. All ligands induced phosphorylation of ErbB2, indicating receptor heterodimerization. TGFα, despite having much lower receptor affinity, was about equally potent and efficacious as HB-EGF as a stimulator of DNA synthesis. In contrast, EGF had relatively high affinity but markedly lower efficacy in stimulation of DNA synthesis. The results suggest that amplifying and/or inhibitory mechanisms may modulate the mitogenic responses downstream of the initial signalling steps, and that this may affect the effects of the EGFR ligands differentially.

Disclosure statement

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,233.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.