726
Views
173
CrossRef citations to date
0
Altmetric
Research Article

Gene Transfer by Means of Lipo- and Polyplexes: Role of Clathrin and Caveolae-Mediated Endocytosis

, &
Pages 237-247 | Received 01 May 2006, Accepted 30 May 2006, Published online: 09 Dec 2008
 

Abstract

In this paper we address the contribution of different endocytic pathways to the intracellular uptake and processing of differently sized latex particles and of plasmid DNA complexes by means of fluorescence microscopy and FACS analysis. By using a number of specific inhibitors of either clathrin-dependent or caveolae-dependent endocytosis we were able to discriminate between these two pathways. Latex particles smaller than 200 nm were internalized exclusively by clathrin-mediated endocytosis, whereas larger particles entered the cells via a caveolae-dependent pathway.

The route of uptake of plasmid DNA complexes appears strongly dependent on the nature of the complexes. Thus, lipoplexes containing the cationic lipid DOTAP, were exclusively internalized by a clathrin-dependent mechanism, while polyplexes prepared from the cationic polymer polyethyleneimine (PEI) were internalized in roughly equal proportions by both pathways. Upon incubation of cells with lipoplexes containing the luciferase gene abundant luciferase expression was observed, which was effectively blocked by inhibitors of clathrin-dependent endocytosis but not by inhibitors of the caveolae-dependent uptake mechanism. By contrast, luciferase transfection of the cells with polyplexes was unaffected by inhibition of clathrin-mediated endocytosis, but was nearly completely blocked by inhibitors interfering with the caveolae pathway. The results are discussed with respect to possible differences in the mechanism by which plasmid DNA is released from lipoplexes and polyplexes into the cytosol and to the role of size in the uptake and processing of the complexes. Our data suggest that improvement of non-viral gene transfection could very much benefit from controlling particle size, which would allow targeting of particle internalization via a non-degradative pathway, involving caveolae-mediated endocytosis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.