494
Views
12
CrossRef citations to date
0
Altmetric
Research Article

SPIN: rapid synthesis, purification, and concentration of small drug-loaded liposomes

, , &
Pages 331-340 | Received 05 Jul 2017, Accepted 11 Sep 2017, Published online: 05 Oct 2017
 

Abstract

Liposomes are one of the most studied nano-delivery systems. However, only a handful of formulations have received FDA approval. Existing liposome synthesis techniques are complex and specialized, posing a major impediment in design, implementation, and mass production of liposome delivery systems as therapeutic agents. Here, we demonstrate a unique ‘synthesis and purification of injectable nanocarriers’ (SPIN) technology for rapid and efficient production of small drug-loaded liposomes using common benchtop equipment. Unilamellar liposomes with mean diameter of 80 nm and polydispersity of 0.13 were synthesized without any secondary post-processing techniques. Encapsulation of dextrans (300–20,000 Da) representing small and large molecular drug formulations was demonstrated without affecting the liposome characteristics. 99.9% of the non-encapsulated molecules were removed using a novel filter centrifugation technique, largely eliminating the need for tedious ultracentrifugation protocols. Finally, the functional efficacy of loaded liposomes as drug delivery vehicles was validated by encapsulating a fluorescent cell tracker (CMFDA) and observing the liposomal release and subsequent uptake of dye by metastatic breast cancer cells (MDA-MB-231) in vitro. The proposed simplified technique addresses the existing challenges associated with liposome preparation in resource limited settings and offers significant potential for advances in translational pharmaceutical development.

Acknowledgements

The authors would like to acknowledge The University of Maryland’s Electron Microscopy Core Imaging facility for the Cryo-EM images.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Science Foundation award # 1645195 and 1550976, and Division of Chemical, Bioengineering, Environmental, and Transport Systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.