294
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced nuclear translocation and activation of aryl hydrocarbon receptor (AhR) in THP-1 monocytic cell line by a novel niosomal formulation of indole-3-carbinol

, , , , &
Pages 117-125 | Received 08 Dec 2018, Accepted 18 Mar 2019, Published online: 27 May 2019
 

Abstract

Although niosomes structurally resemble liposomes, they are composed of nonionic surfactants which result in less toxicity and more stability. Here, we developed a novel niosomal formulation of I3C and investigated the nuclear translocation and activation of AhR among human acute myeloid leukaemia (AML) monocytic THP-1 cell line. Niosomal vesicles comprised of nonionic surfactants, cholesterol and I3C were prepared using thin film hydration (TFH) method and characterized according to the entrapment efficiency (EE %), size and zeta potential, by Dynamic light scattering method (DLS), and the surface morphology visualized by Transmission electron microscopy (TEM). In vitro release of I3C was evaluated and MTS assay was used to evaluate the viability of THP-1 cells. The nuclear translocation of AhR was assessed by immunocytochemistry (ICC) and Real-time RT-PCR was conducted using AhR target genes. The ratio of Cholesterol:Span 60 (1:1) niosomal formulations with the highest significant EE% were selected. I3C exerted cytotoxic effects on THP-1 cells in a dose- and time-dependent manner, while administration of niosomal I3C reduced these effects. Both niosomal and free I3C formulations facilitated the nuclear translocation of AhR. CYP1A1 was overexpressed in response to both free and niosomal I3C treatments, while IL1β was overexpressed merely in niosomal I3C-treated THP-1 cells. Niosomal formulation of I3C resulted in reduced cytotoxicity effects by enhancing the functional effects of I3C on AhR in THP-1 cells, including its nuclear translocation and overexpression of the target genes.

Acknowledgements

We would like to thank Dr Samadian, Mrs Yousefi and Mrs Haydari for their scientific and technical support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This article was derived from a thesis of M.Sc. degree in the field of Medical biotechnology (Grant Number: 95112662, Code of Ethics: IR.GOUMS.REC.12950238) at Gorgan School of Advanced Technologies in Medicine of Golestan University of Medical Sciences, Gorgan, Iran.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.