278
Views
46
CrossRef citations to date
0
Altmetric
Original Articles

Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation

ORCID Icon, &
Pages 163-173 | Received 04 Feb 2019, Accepted 15 Apr 2019, Published online: 22 May 2019
 

Abstract

Olanzapine (OL) is an atypical antipsychotic drug which suffers from an extensive hepatic metabolism and poor bioavailability. In addition, it has low brain permeability due to efflux by P-glycoproteins. In the current investigation, surface modified niosomes containing OL were prepared for brain targeting of the drug through nasal route. Spans were mixed with cholesterol at ratios of 1:1, 1:2, 1:3, and 1:4 of cholesterol to surfactant, respectively to prepare niosomes. Chitosan (CS) coated vesicles were prepared by mixing optimum niosomal formula with CS solution (0.6%). Physicochemical and stability parameters and confocal laser scanning microscopy (CLSM) of developed vesicles were determined. Also, the brain targeting properties of the optimized formula were measured in rats. Niosomes had entrapment efficiency more than 90% and particle size ranging from 201.3 ± 2.4 nm to 1446 ± 9 nm. TEM photomicrographs of developed vesicles showed a clear shell surrounding the coated vesicles. The produced vesicles exhibited 2.46 folds increase in the amount of drug that permeated nasal mucosa and prolonged OL release compared to drug solution. Coated niosomes further improved drug permeation. CLSM of coated optimum formula showed high permeation across the nasal mucosa. Stability studies revealed non-significant changes in the physicochemical parameters of optimum formula over the storage period. The optimized nasal CS-coated niosomes showed a three-fold increase in OL concentration in the brain compared to the intranasal solution of the drug. In conclusion, the developed vesicles were efficient in nasal delivery of OL into the brain.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.