511
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Ethosomes as dermal/transdermal drug delivery systems: applications, preparation and characterization

, , ORCID Icon & ORCID Icon
Pages 34-52 | Received 23 Dec 2021, Accepted 25 May 2022, Published online: 13 Jun 2022
 

Abstract

Transdermal drug delivery systems (TDDSs) have gained substantial attention during the last decade. TDDS are versatile delivery systems in which active components are delivered to skin for local effects or systemic delivery of active pharmaceutical through the skin. Overcoming stratum corneum is the most challenging step of delivering drugs through the skin. Lipid-based vesicular delivery systems due to the capability of the delivery of both hydrophilic and hydrophobic drugs are becoming more popular during the recent years. Ethosomes are innovative, biocompatible, biodegradable and non-toxic form of lipid-based vesicles that efficiently enable to entrap drugs of various physicochemical properties. These are other forms of liposome which contain high amounts of ethanol in their structure that enabling ethosomes to efficiently penetrate through deeper layers of skin. Ethosomes have various compositions based on their type but are mainly composed of phospholipids, ethanol, water and the active components. Ethosomes are easily manufactured and they are superior compared to liposomes in terms of different aspects due to the presence of ethanol. The purpose of this review is to thoroughly focus on various aspects of ethosomes, including mechanism of penetration, advantages and disadvantages, characterisation and applications.

Acknowledgement

This study was a part of Pharm. D. thesis of Ms. Atoosa Jafari. The authors would like to appreciate the financial support of Vice Chancellor in Research of Shiraz University of Medical Sciences (SUMS).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

This work was supported by the Vice-Chancellor for Research, Shiraz University of Medical Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.