125
Views
17
CrossRef citations to date
0
Altmetric
Original

Adaptation of trigeminal ganglion cells to periodic whisker deflections

, &
Pages 111-118 | Received 22 Jan 2006, Accepted 25 Jun 2006, Published online: 10 Jul 2009
 

Abstract

Trigeminal ganglion neurons in adult rats adapt to periodic whisker deflections in the range of 1–40 Hz, manifested as a reduction in spike counts to progressively later stimuli in a train of pulsatile or sinusoidal deflections. For high velocity, pulsatile deflections, adaptation is time- and frequency-dependent; as in the case of thalamic and cortical neurons, adaptation is greater at higher stimulus frequencies. With slower velocity, sinusoidal movements, trigeminal ganglion cells differ from central neurons, however, by exhibiting strong adaptation even at low frequencies. For both types of stimuli, effects in trigeminal ganglion neurons were more pronounced in rats maintained during the recording session under neuromuscular blockade than in non-paralysed animals. Results are consistent with previous findings in other systems that frequency-dependent adaptation of cutaneous primary afferent neurons is affected by mechanical properties of the skin. Such effects are likely to vary depending on the nature of the whisker stimuli and physiological states that affect skin viscoelasticity.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.