148
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design and physicochemical characterization of poly(amidoamine) nanoparticles and the toxicological evaluation in human endothelial cells: applications to peptide delivery to the brain

, , , , , & show all
Pages 957-971 | Received 25 Mar 2012, Accepted 21 Jul 2012, Published online: 02 Oct 2012
 

Abstract

In this study, we investigated nanoparticles formulated by self-assembly of a biodegradable poly(amidoamine) (PAA) and a fluorescently labeled peptide, in their capacity to internalize in endothelial cells and deliver the peptide, with possible applications for brain drug delivery. The nanoparticles were characterized in terms of size, surface charge, and loading efficiency, and were applied on human cerebral microvascular endothelial cells (hCMEC/D3) and human umbilical vein endothelial cells (Huvec) cells. Cell-internalization and cytotoxicity experiments showed that the PAA-based nanocomplexes were essentially nontoxic, and the peptide was successfully internalized into cells. The results indicate that these PAAs have an excellent property as nontoxic carriers for intracellular protein and peptide delivery, and provide opportunities for novel applications in the delivery of peptides to endothelial cells of the brain.

Acknowledgment

This research work is part of the European FP6 IP Nanobiopharmaceutics.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.