168
Views
7
CrossRef citations to date
0
Altmetric
Article

Co-delivery of cisplatin and doxorubicin by carboxylic acid functionalized poly (hydroxyethyl methacrylate)/reduced graphene nanocomposite for combination chemotherapy of breast cancer cells

, , &
Pages 657-677 | Received 19 Sep 2020, Accepted 21 Nov 2020, Published online: 21 Dec 2020
 

Abstract

In this study a novel pH-responsive magnetic nanocomposite based on reduced graphene oxide was developed for combination of doxorubicin (Dox)-cisplatin (Cis) delivery to destroy the MCF-7 cell line. For this purpose, polyhydroxyethyl methacrylate (PHEMA) was bonded to the reduced graphene oxide through ATRP polymerization using grafting from method. Then the PHEMA hydroxy groups were converted to succinyloxy groups by polyesterification with succinic anhydride. The physicochemical properties of the nanocomposite were investigated via FTIR, SEM, XRD, DLS and TGA analysis. Unique structure of nanocomposite led to simultaneous encapsulation of Dox (75%) and Cis (82%) through ionic interaction, π–π stacking and hydrogen bonding. The obtained nanocomposite was uptake by MCF-7 cells at early first hour because of nanocomposite small size (below 70 nm). Cell viability assay results revealed that the Dox&Cis-loaded nanocomposite showed the highest rate of MCF-7 cells at lowest concentration (IC50 = 0.798 µg/mL) compared to treatment groups received single drug-loaded nanocomposite and free drugs. Dox&Cis-loaded nanocomposite exhibited a synergistic influence with the combination index (CI) value <1. The cell cycle analysis results revealed that the highest amount of apoptosis (cells population in sub G1 was 75%) was observed in the Dox&Cis-loaded nanocomposite treatment group compared with the single drug-loaded nanocomposite and free drugs. Our findings confirmed that combinational therapy by Dox and Cis graphene oxide-based nanocomposite has increased the cytotoxicity in MCF-7 cells by stimulating the apoptotic response.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.