824
Views
16
CrossRef citations to date
0
Altmetric
Research Article

A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery

, , , &
Pages 763-778 | Received 22 Oct 2020, Accepted 16 Dec 2020, Published online: 09 Feb 2021
 

Abstract

pH-responsive core-shell structured composite hydrogel beads, composed of a alginate (ALG) core coated with carboxymethyl cellulose (CMC) shell (ALG@CMC), were prepared by using in-situ gel preparation technology as a drug delivery system. An anti-inflammatory drug, indomethacin was loaded into the formed hydrogels as a model drug. The resulting gel samples were characterized by Fourier transforms infrared (FTIR) spectroscopy, thermo-gravimetric (TG) analysis, and scanning electron microscopy (SEM). The mechanical stability of all samples in phosphate buffered solution (PBS, pH 7.4) was approximately measured through oscillation experiments. Swelling and controlled drug release behaviors of ALG@CMC beads compared with ALG were studied in simulating gastric fluid of pH 1.2 or intestinal fluid of pH 7.4 at 37 °C. Oscillation experiments proved that the mechanical stability of ALG@CMC beads could be significantly improved by the CMC shell layer. The swelling and drug release behaviors revealed that the swelling and drug release rate of ALG@CMC beads were obviously slower than that of simple-ALG and both have significant pH responsiveness. The cumulative drug release from ALG, ALG@CMC-1, ALG@CMC-2 and ALG@CMC-3 was about 100%, 67%, 46% and 37% in simulated intestinal fluid of pH 7.4, respectively, while the drug release reached only about 2.0% in simulating gastric fluid of pH 1.2 within 720 min. These developed materials could potentially be employed as a pH-responsive drug delivery device in vivo.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Natural Science Foundation of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.