312
Views
35
CrossRef citations to date
0
Altmetric
NOVARTIS FOUNDATION MEETING REVIEW

Neuroimaging in Human Amblyopia

&
Pages 21-35 | Accepted 15 Dec 2005, Published online: 08 Jul 2009
 

Abstract

Functional magnetic resonance imaging (fMRI), positron emission tomography (PET) and magnetoencephalography (MEG) have been the principal neuroimaging tools used to assess the site and nature of cortical deficits in human amblyopia. A review of this growing body of work is presented here with particular reference to various controversial issues, including whether or not the primary visual cortex is dysfunctional, the involvement of higher-order visual areas, neural differences between strabismic and anisometropic amblyopes, and the effects of modern-day drug treatments. We also present our own recent MEG work in which we used the analysis technique of synthetic aperture magnetometry (SAM) to examine the effects of strabismic amblyopia on cortical function. Our results provide evidence that the neuronal assembly associated with form perception in the extrastriate cortex may be dysfunctional in amblyopia, and that the nature of this dysfunction may relate to a change in the normal temporal pattern of neuronal discharges. Based on these results and existing literature, we conclude that a number of cortical areas show reduced levels of activation in amblyopia, including primary and secondary visual areas and regions within the parieto-occipital cortex and ventral temporal cortex.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 442.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.