162
Views
37
CrossRef citations to date
0
Altmetric
Original

Complex cell pooling and the statistics of natural images

&
Pages 81-100 | Received 19 Aug 2005, Accepted 25 Apr 2007, Published online: 09 Jul 2009
 

Abstract

In previous work, we presented a statistical model of natural images that produced outputs similar to receptive fields of complex cells in primary visual cortex. However, a weakness of that model was that the structure of the pooling was assumed a priori and not learned from the statistical properties of natural images. Here, we present an extended model in which the pooling nonlinearity and the size of the subspaces are optimized rather than fixed, so we make much fewer assumptions about the pooling. Results on natural images indicate that the best probabilistic representation is formed when the size of the subspaces is relatively large, and that the likelihood is considerably higher than for a simple linear model with no pooling. Further, we show that the optimal nonlinearity for the pooling is squaring. We also highlight the importance of contrast gain control for the performance of the model. Our model is novel in that it is the first to analyze optimal subspace size and how this size is influenced by contrast normalization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.