258
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synaptic noise facilitates the emergence of self-organized criticality in the Caenorhabditis elegans neuronal network

Pages 1-19 | Received 07 Feb 2018, Accepted 10 Oct 2018, Published online: 19 Oct 2018
 

ABSTRACT

Avalanches with power-law distributed size parameters have been observed in neuronal networks. This observation might be a manifestation of self-organized criticality (SOC). Yet, the physiological mechanisms of this behaviour are currently unknown. Describing synaptic noise as transmission failures mainly originating from the probabilistic nature of neurotransmitter release, this study investigates the potential of this noise as a mechanism for driving the functional architecture of the neuronal networks towards SOC. To this end, a simple finite state neuron model, with activity dependent and synapse specific failure probabilities, was built based on the known anatomical connectivity data of the nematode Ceanorhabditis elegans. Beginning from random values, it was observed that synaptic noise levels picked out a set of synapses and consequently an active subnetwork that generates power-law distributed neuronal avalanches. The findings of this study bring up the possibility that synaptic failures might be a component of physiological processes underlying SOC in neuronal networks.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.