33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bolstering IoT security with IoT device type Identification using optimized Variational Autoencoder Wasserstein Generative Adversarial Network

, , &
Received 27 Mar 2023, Accepted 07 Jan 2024, Published online: 31 Jan 2024
 

ABSTRACT

Due to the massive growth in Internet of Things (IoT) devices, it is necessary to properly identify, authorize, and protect against attacks the devices connected to the particular network. In this manuscript, IoT Device Type Identification based on Variational Auto Encoder Wasserstein Generative Adversarial Network optimized with Pelican Optimization Algorithm (IoT-DTI-VAWGAN-POA) is proposed for Prolonging IoT Security. The proposed technique comprises three phases, such as data collection, feature extraction, and IoT device type detection. Initially, real network traffic dataset is gathered by distinct IoT device types, like baby monitor, security camera, etc. For feature extraction phase, the network traffic feature vector comprises packet sizes, Mean, Variance, Kurtosis derived by Adaptive and concise empirical wavelet transforms. Then, the extracting features are supplied to VAWGAN is used to identify the IoT devices as known or unknown. Then Pelican Optimization Algorithm (POA) is considered to optimize the weight factors of VAWGAN for better IoT device type identification. The proposed IoT-DTI-VAWGAN-POA method is implemented in Python and proficiency is examined under the performance metrics, like accuracy, precision, f-measure, sensitivity, Error rate, computational complexity, and RoC. It provides 33.41%, 32.01%, and 31.65% higher accuracy, and 44.78%, 43.24%, and 48.98% lower error rate compared to the existing methods.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.