130
Views
23
CrossRef citations to date
0
Altmetric
Original

The effects of microwave frequency electromagnetic fields on the development of Drosophila melanogaster

&
Pages 435-441 | Received 25 Jul 2005, Accepted 09 May 2006, Published online: 03 Jul 2009
 

Abstract

Purpose: To investigate the effects of microwave frequency electromagnetic fields (EMF) on the development of Drosophila melanogaster.

Materials and methods: Larvae of D. melanogaster were exposed to 10 GHz EMF continuously (3 h, 4 h and 5 h) and discontinuously (3 h exposure + 30 min interval + 3 h exposure). The percentages and times of transition from larvae to pupae and from pupae to adults were determined, and the mean offspring number was examined using the offspring of the females which had been exposed as larvae.

Results: No differences were found in the transition percentages from larvae to pupae and from pupae to adults (p > 0.05). However, it was found that the mean pupation time was delayed linearly with an increasing electromagnetic field (EMF) exposure period (p < 0.05). In the 3 + 3-h exposed group (E3 + 3), the mean offspring number was significantly less than that of the control (p < 0.05).

Conclusions: 10 GHz EMF can cause developmental delay and decrease the number of offspring in D. melanogaster.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.