96
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Extremely low frequency (ELF) magnetic fields enhance chemically induced formation of apurinic/apyrimidinic (AP) sites in A172 cells

, , &
Pages 53-59 | Received 07 Dec 2006, Accepted 07 Aug 2007, Published online: 03 Jul 2009
 

Abstract

Purpose: To detect the effects of extremely low frequency (ELF) magnetic fields, the number of apurinic/apyrimidinic (AP) sites in human glioma A172 cells was measured following exposure to ELF magnetic fields.

Materials and methods: The cells were exposed to an ELF magnetic field alone, to genotoxic agents (methyl methane sulfonate (MMS) and hydrogen peroxide (H2O2)) alone, or to an ELF magnetic field with the genotoxic agents. After exposure, DNA was extracted, and the number of AP sites was measured.

Results: There was no difference in the number of AP sites between cells exposed to an ELF magnetic field and sham controls. With MMS or H2O2 alone, the number of AP sites increased with longer treatment times. Exposure to an ELF magnetic field in combination with the genotoxic agents increased AP-site levels compared with the genotoxic agents alone.

Conclusions: Our results suggest that the number of AP sites induced by MMS or H2O2 is enhanced by exposure to ELF magnetic fields at 5 millitesla (mT). This may occur because such exposure can enhance the activity or lengthen the lifetime of radical pairs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.