153
Views
3
CrossRef citations to date
0
Altmetric
Original Article

In vivo measurement of the hypoxia marker EF5 in Shionogi tumours using 19F magnetic resonance spectroscopy

, , , &
Pages 237-242 | Received 01 Jun 2007, Accepted 08 Oct 2007, Published online: 03 Jul 2009
 

Abstract

Purpose: 19F magnetic resonance spectroscopy (MRS) was used to non-invasively detect EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide] adducts in the Shionogi tumour model of prostate cancer to evaluate hypoxia.

Material and methods: 19F MRS signal of EF5 in Shionogi mouse tumours was acquired using a 2 cm diameter solenoid volume coil with a 7.05 T Bruker scanner. MRS signal was observed in mouse tumours longitudinally following intraperitoneal (IP) injection of EF5. Another mouse group was injected intravenously (IV) with EF5, and in vivo MRS signal was obtained two hours after injection. This data was compared with the ex vivo percentage of hypoxic cells present in the corresponding excised tumours, determined by flow cytometry of bound EF5.

Results: Longitudinal 19F MRS signal attributable to EF5 began to decline within five hours of EF5 administration. Flow cytometry comparisons yielded an inverse correlation (p-value < 0.006) between the MRS signal and tumour hypoxic cell percentage. The tumours exhibited an average cell viability of 34 ± 26%.

Conclusions: The results confirmed that MRS of EF5 in mice is an unsuitable technique for the determination of EF5 binding as a measure of tumour hypoxia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.