167
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical analysis of transmembrane potential of cells exposed to nanosecond pulsed electric field

, , , , , , & show all
Pages 231-239 | Received 29 Jun 2016, Accepted 23 Aug 2016, Published online: 10 Oct 2016
 

Abstract

Purpose: Intracellular electroporation occurs when the cells are exposed to nanosecond pulsed electric field (nsPEF). It is believed the electroporation (formation and extension of pores on the membrane induced by external electric field) is affected significantly by the transmembrane potential. This paper analyzed transmembrane potential induced by nsPEF in the term of pulse frequency spectrum, aiming to provide a theoretical explanation to intracellular bio-effects.

Methods: Based on the double-shelled spherical cell model, the frequency dependence of transmembrane potential was obtained by solving Laplace’s equation, while the time course of transmembrane potential was obtained by a method combined with discrete Fourier transform and Laplace transform. First-order Debye equation was used to describe the dielectric relaxation of the cell medium.

Results: Frequency-domain analysis showed that when the electric field frequency was higher than 105 Hz, the transmembrane potential on the organelle membrane (ΔΦo) was increasing to exceed the transmembrane potential on the cellular membrane (ΔΦc). In the time-domain analysis, transmembrane potentials induced by four nsPEF (short trapezoid, long trapezoid, bipolar and sine shapes) with the same field strength were compared with each other. It showed that ΔΦo is obviously larger than ΔΦc if the curve of the normalized frequency spectrum of the pulse is more similar with the curve of normalized ΔΦo in frequency domain. Pulses with major frequency components higher than 108 Hz lead to both small ΔΦo and ΔΦc. This may explain why high power pulsed microwave lead to unobvious bio-effects of cells than nsPEF with trapezoid form.

Conclusion: Through the pulse frequency spectrum it is clearer to understand the relationship between nsPEF and the transmembrane potential.

Disclosure statement

The authors report no conflicts of interest. The authors alone are response for the content and writing of the paper.

Funding

This work is funded by the National Natural Science Foundation of China (NSFC), grant 61101032 and the National Basic Research Program of China (973 Program), grant 2011CB503706.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.