500
Views
87
CrossRef citations to date
0
Altmetric
Research Article

The Phylogeny and Signature Sequences Characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes

Pages 123-143 | Published online: 29 Sep 2008
 

Abstract

Fibrobacteres, Chlorobi, and Bacteroidetes (FCB group) comprise three main bacterial phyla recognized on the basis of 16S rRNA trees. Presently, there are no distinctive biochemical or molecular characteristics known that can distinguish these bacteria from other bacterial phyla. The relationship of these bacteria to other phyla is also not known. This review describes many signatures, consisting of defined and conserved inserts in widely distributed proteins, that provide distinctive molecular markers for these groups of bacteria. These signatures serve to clarify the evolutionary relationship between members of the FCB group, and to other bacterial phyla. A 4 aa insert in DNA Gyrase B (GyrB) and a 45 aa insert in the SecA proteins are uniquely shared by various Bacteroidetes species. The insert in GyrB is present in all Bacteroidetes species (>100) covering different orders and families, indicating that it is a distinctive characteristic of the group. Three signatures consisting of an 18 aa insert in ATPase α-subunit, an 8–9 aa insert in the FtsK protein and a 1 aa insert in the UvrB protein are commonly shared only by the Bacteroidetes and Chlorobi homologs providing evidence that these two groups are specifically related to each other. Two additional inserts in the RNA polymerase β′-subunit (5–7 aa) and Serine hydroxymethyl-transferase (14–16 aa), which are commonly present in various Bacteroidetes, Chlorobi, and Fibrobacteres homologs, but not any other bacteria, provide evidence that these groups shared a common ancestor exclusive of all other bacteria. The FCB groups of bacteria are indicated to have diverged from this common ancestor in the following order: Fibrobacteres → Chlorobi → Bacteriodetes. The inferences from signature sequences are strongly supported by phylogenetic analyses. These observations suggest that the FCB groups of bacteria should be placed in a single phylum rather than three distinct phyla. Signature sequences in a number of other proteins provide evidence that the FCB group of bacteria diverged at a similar time as the Chlamydiae group, and that the Spirochetes and Aquificales groups are its closest relatives.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.