943
Views
108
CrossRef citations to date
0
Altmetric
Research Article

The Physiological Role of Ferritin-Like Compounds in Bacteria

Pages 173-185 | Published online: 19 Oct 2008
 

Abstract

Iron, as the ferrous or ferric ion, is essential for the life processes of all eukaryotes and most prokaryotes; however, the element is toxic when in excess of that needed for cellular homeostasis. Ferrous ions can react with metabolically generated hydrogen peroxide to yield toxic hydroxyl radicals that in turn degrade lipids, DNA, and other cellular biomolecules. Mechanisms have evolved in living systems for iron detoxification and for the removal of excess ferrous ions from the cytosol. These detoxification mechanisms involve the oxidation of excess ferrous ions to the ferric state and storage of the ferric ions in ferritin-like proteins.

There are at least three types of ferritin-like proteins in bacteria: bacterial ferritin, bacterioferritin, and dodecameric ferritin. These bacterial proteins are related to the ferritins found in eukaryotes. The structure and physical characteristics of the ferritin-like compounds have been elucidated in several bacteria. Unfortunately, the physiological roles of the bacterial ferritin-like compounds have been less thoroughly studied. A few studies conducted with mutants indicated that ferritin-like compounds can protect bacterial cells from iron overload, serve as an iron source when iron is limited, protect the bacterial cells against oxidative stress and/or protect DNA against enzymatic or oxidative attack. There is very little information available concerning the roles that ferritin-like compounds might play in the survival of bacteria in food, water, soil, or eukaryotic host environments.

Mention of trade names or commercial products in this [article] [publication] is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

This article is not subject to U.S. copyright laws.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 783.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.