374
Views
63
CrossRef citations to date
0
Altmetric
Research Article

Formaldehyde and Glutaraldehyde and Nasal Cytotoxicity: Case Study Within the Context of the 2006 IPCS Human Framework for the Analysis of a Cancer Mode of Action for Humans

, , &
Pages 821-835 | Published online: 10 Oct 2008
 

Abstract

Formaldehyde and glutaraldehyde cause toxicity to the nasal epithelium of rats and mice upon inhalation. In addition, formaldehyde above certain concentrations induces dose-related increases in nasal tumors in rats and mice, but glutaraldehyde does not. Using the 2006 IPCS human framework for the analysis of cancer mode of action (MOA), an MOA for formaldehyde was formulated and its relevance was tested against the properties of the noncarcinogenic glutaraldehyde. These compounds produce similar patterns of response in histopathology and in genotoxicity tests (although formaldehyde has been much more extensively tested studied). The MOA is based on the induction of sustained cytotoxicity and reparative cell proliferation induced by formaldehyde at concentrations that also induce nasal tumors upon long-term exposure. Data on dose dependency and temporal relationships of key events are consistent with this MOA. While a genotoxic MOA can never be ruled out for a compound that is clearly genotoxic, at least in vitro, the nongenotoxic properties fundamental to the proposed MOA can explain the neoplastic response in the nose and may be more informative than genotoxicity in risk assessment. It is not yet fully explained why glutaraldehyde remains noncarcinogenic upon inhalation, but its greater inherent toxicity may be a key factor. The dual aldehyde functions in glutaraldehyde are likely to produce damage resulting in fewer kinetic possibilities (particularly for proteins involved in differentiation control) and lower potential for repair (nucleic acids) than would be the case for formaldehyde. While there have been few studies of possible glutaraldehyde-associated cancer, the evidence that formaldehyde is a human carcinogen is strong for nasopharyngeal cancers, although less so for sinonasal cancers. This apparent discrepancy could be due in part to the classification of human nasal tumors with tumors of the sinuses, which would receive much less exposure to inhaled formaldehyde. Evaluation of the human relevance of the proposed MOA of formaldehyde in rodents is restricted by human data limitations, although the key events are plausible. It is clear that the human relevance of the formaldehyde MOA in rodents cannot be excluded on either kinetic or dynamic grounds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 739.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.