323
Views
20
CrossRef citations to date
0
Altmetric
Original Articles: Research

Effects of digoxin on cell cycle, apoptosis and NF-κB pathway in Burkitt’s lymphoma cells and animal model

, , , , , , , , & show all
Pages 1673-1685 | Received 20 Apr 2016, Accepted 26 Oct 2016, Published online: 13 Jan 2017
 

Abstract

Digoxin has potential antitumor properties. This study investigated whether digoxin suppressed Burkitt’s lymphoma (BL) cells. Raji and NAMALWA cells were exposed to digoxin, followed by assay of cell viability, apoptosis and cell cycle. Western blotting was used to analyze NF-κB activity. A xenograft model was established for therapeutic efficacy evaluation. Digoxin inhibited cell growth and resulted in apoptosis and cell cycle arrest (G0/G1 for Raji cells; G2/M for NAMALWA cells). Digoxin inhibited DNA synthesis and induced morphological apoptotic characteristics. Besides, digoxin inhibited NF-κB and TNF-α-stimulated NF-κB activity, and suppressed NF-κB initiating genes (Bcl-2, Bcl-xL, cyclin D1, and c-myc), however, increased p21cip1. Digoxin activated caspase-9/3. Furthermore, digoxin inhibited xenograft tumors growth and reduced Ki-67 and c-myc. Digoxin exerted antitumor effects on BL cells in vitro and in vivo might through regulating NF-κB and caspase pathway. These outcomes highlight the potential of digoxin as a therapeutic agent for BL.

Potential conflict of interest

Disclosure forms provided by the authors are available with the full text of this article online at http://dx.doi.org/10.1080/10428194.2016.1256480.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,065.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.