363
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy

, , , , &
Pages 780-789 | Received 08 Sep 2018, Accepted 09 Nov 2018, Published online: 27 Dec 2018
 

Abstract

Liposomes are versatile delivery systems and immunological adjuvants that not only can load various antigens, such as proteins, peptides, nucleic acids and carbohydrates, but also can combine them with immunostimulators. Liposomes have great potential in the development of new types of vaccines, and much effort has been devoted to enhancing vaccine efficacy in recent years. Different types of immune cells such as macrophages and dendritic cells play an important role in the immune response and in preventing or treating cancer, allergy or many other infectious diseases. Targeting liposome-based delivery systems to certain immune cells and organs is one of the most effective measures in such treatments. Extensive research has shown that liposomes combined with immunostimulators or modified with pattern recognition receptor ligands can target various immune cells and the lymphatic system, thus not only inducing and promoting the desired immune response but also decreasing adverse effects throughout the body and avoiding targeting irrelevant cell types or tissues. Therefore, in this review, we outline some targeting strategies that can be adopted in the design of liposomal vaccines to improve vaccine efficacy, and we summarise the related liposome-based vaccine applications in several diseases. These applications have great potential to treat or prevent some infectious and intractable diseases.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work is supported by the National Natural Science Foundation of China [81460541], the Science and Technology Program of Ningxia Medical University [XT201314] and the Science and Technology Program of Overseas Students [2014486].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.