171
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Protective effects of resveratrol and SR1001 on hypoxia-induced pulmonary hypertension in rats

, , , , &
Pages 519-526 | Received 11 Nov 2019, Accepted 23 Dec 2019, Published online: 23 Jan 2020
 

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a fatal disease with limited therapeutic strategies. Combination therapy is regarded as the standard of care in PH and becoming widely used in clinical practice. However, many PH patients treated with combinations of available clinical drugs still have a poor prognosis. Therefore, identifying innovative therapeutic strategies is essential for PH. This study is designed to examine the effects of combined prevention with resveratrol and SR1001 on HPH in rats. The effects of combined prevention with resveratrol and SR1001 and each mono-prevention on the development of HPH, Th17 cells differentiation, expression of guanine nucleotide exchange factor-H1 (GEF-H1), Ras homolog gene family member A (RhoA) and Phosphorylated myosin phosphatase target subunit (MYPT1) were examined. HPH and RV hypertrophy occurred in rats exposed to hypoxia. Compared with normoxia group, the hypoxia group showed significantly increased ratio of Th17 cells. After treatment with resveratrol, HPH rats showed an obvious reduction of Th17 cells. SR1001 significantly reduced the increased p-MYPY1, RhoA, and GEF-H1 expression in the hypoxic rats. The mono-prevention with resveratrol or SR1001 significantly inhibited the Th17 cells differentiation, p-STAT3, p-MYPY1, RhoA, and GEF-H1 protein expression, which was further inhibited by their combination prevention. The combination of resveratrol and SR1001 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to exert further beneficial effects on HPH.

Acknowledgments

This work was supported by grant from the National Natural Science Foundation of China (No. 81900056).

Conflict of interest statement

The authors declare no conflict of interest.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [81900056].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.