204
Views
60
CrossRef citations to date
0
Altmetric
Original

Cadmium effects on ROS production and DNA damage via adrenergic receptors stimulation: Role of Na+/H+ exchanger and PKC

, &
Pages 1059-1070 | Published online: 07 Jul 2009
 

Abstract

The objective of the present study was to elucidate the events that are involved in reactive oxygen species (ROS) production and DNA damage after adrenergic receptors stimulation by cadmium, in relation to cAMP, protein kinase C (PKC) and Na+/H+ exchanger (NHE). Cadmium (50 μM) caused increased levels of ROS with a concomitant increase in DNA damage in digestive gland of Mytilus galloprovincialis. Either the use of EIPA, a NHE blocker, or calphostin C, the inhibitor of PKC, reduced cadmium effects. Cells treated with α1-, α2-, β- and β1- adrenergic antagonists together with cadmium reversed cadmium alone effects, while the respective adrenergic agonists, phenylephrine and isoprenaline, mimic cadmium effects. Moreover, cadmium caused an increase in the levels of cAMP in digestive gland cells that were reversed after NHE and PKC inhibition as well as in the presence of each type of adrenergic antagonist. The different sensitivity of α1-, α2-, β-, β1- adrenergic receptors on ROS, cAMP production and DNA damage possibly leads to the induction of two signaling pathways that may be interacting or to the presence of a compensatory pathway that acts in concert with the α- and β- adrenergic receptors. In these signaling pathways PKC and NHE play significant role.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.