360
Views
60
CrossRef citations to date
0
Altmetric
Original

Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: Relation to mitochondrial permeability transition

, , &
Pages 38-49 | Received 06 May 2006, Published online: 07 Jul 2009
 

Abstract

We studied the toxicological responses of a human hepatoblastoma cell line (HepG2/C3A) to various free fatty acids (FFA) in order to identify the relation between reactive oxygen species (ROS) production and mitochondrial permeability transition (MPT). Exposure to the saturated FFA, palmitate, led to a time-dependent ROS production and hydrogen peroxide release as well as a loss of mitochondrial potential. The cytotoxicity of palmitate was significantly reduced by treating with scavengers of hydrogen peroxide, hydroxyl radical and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN). Superoxide dismutase (SOD) mimics, nitric oxide scavenger, and inhibitor of de novo ceramide synthesis had no effect on the toxicity. MPT-inhibitor, cyclosporine, prevented the loss of mitochondrial potential but did not reduce the cytotoxicity. In contrast, inhibiting mitochondrial complexes I and III reduced the early potential loss and the cytotoxicity. These results suggest that palmitate-cytotoxicity to hepatoma cells is mediated through the production of H2O2 and *OH and independent of MPT.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.