51
Views
12
CrossRef citations to date
0
Altmetric
Original

Fluidity and oxidative stress in erythrocytes from very low birth weight infants during their first 7 days of life

, , , , , & show all
Pages 1035-1040 | Received 29 May 2007, Published online: 07 Jul 2009
 

Abstract

Objective: To study the evolution of lipid peroxidation, enzymatic antioxidants response, lipid profile and membrane fluidity in erythrocytes from very low birth weight (VLBW) infants during their first 7 days of extra-uterine life.

Study design: One hundred and twenty infants were selected and divided in two groups according to their weight and gestational age. Hydroperoxides, fatty-acid profile, fluidity (DPH and TMA-DPH) and catalase, SOD and GPx activities were measured in erythrocytes.

Results: VLBW group showed higher concentration of hydroperoxides and lower membrane fluidity during the first 72 h, lower SOD activity during the first 3 h and higher GPx activity during the first 7 days of life. Also, this group showed lower n-3 polyunsaturated fatty-acids percentage with respect to the term group.

Conclusion: Erythrocytes from VLBW infants showed higher oxidative damage and lower fluidity in their membranes, at least during the first 3 days of extra-uterine life, which may cause alterations in their functions and flexibility.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.