275
Views
55
CrossRef citations to date
0
Altmetric
Original

Association of renal damage and oxidative stress in a rat model of metabolic syndrome. Influence of gender

, , , & , PhD
Pages 761-771 | Received 16 Feb 2009, Published online: 19 Jan 2010
 

Abstract

This study investigated the association between nephropathy and oxidative stress, by measurement of systolic blood pressure, lipid peroxidation, activities of catalase, manganese- and copper-zinc-superoxide dismutase and endothelial nitric oxide synthase expression and concentrations of nitrates/nitrites in kidneys from rats with Metabolic Syndrome. Weaning female or male rats had 30% sucrose to drink for 24 weeks (Metabolic Syndrome). Modulation by sex hormones was investigated by gonadectomy and hormone replacement. In Metabolic Syndrome, Castrated Metabolic Syndrome + Testosterone males and Ovariectomized Metabolic Syndrome females had increased blood pressure, proteinuria and lipid peroxidation. Nitrates/nitrites and activities of catalase, manganese and copper-zinc-superoxide dismutase decreased vs intact Control, Castrated Metabolic Syndrome males, intact Metabolic Syndrome and Ovariectomized Metabolic Syndrome + Estradiol females. The results suggest that sex hormones modulate the activity of superoxide-dismutase, catalase and endothelial nitric oxide-synthase. Ovariectomy decreased the protection against oxidative stress in females; the opposite occurred in castrated males.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.