215
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Non-thermal plasma prevents progression of endometriosis in mice

, , , , , , , & show all
Pages 1131-1139 | Received 03 Mar 2016, Accepted 06 Jul 2016, Published online: 08 Aug 2016
 

Abstract

Endometriosis is observed in ∼10% of reproductive age women. Ovarian endometriosis not only causes dysmenorrhea but also causes infertility and a high risk of adenocarcinoma. Due to its scattered nature, complete surgical resection is difficult. Endometriosis consists of glandular and stromal cells. Previously, we showed that endometrial stromal cells (ESCs) play a role in the protection against pathologic events caused by monthly repeated hemorrhage. Here, we undertook a preclinical study of non-thermal plasma (NTP) as a surgical treatment of endometriosis. Epithelial cells were most sensitive to NTP-activated medium in vitro, whereas ectopic ESCs were most resistant. We then transplanted excised uteruses into BALB/c mice from donors of the same strain with estradiol supplementation. Four weeks after the transplantation, we exposed NTP to each endometriotic lesion after laparotomy. Immunohistochemical analysis revealed that immediately after NTP exposure, epithelial cells exhibited significantly higher levels of nuclear immunostaining for 8-hydroxy-2′-deoxyguanosine than did stromal cells. Four weeks after NTP exposure, the total surface area consisting of endometriotic cysts was significantly smaller with less epithelial proliferative activity than the helium-exposed control, whereas the number of endometriotic lesions had not changed. Therefore, NTP exposure may be useful to prevent the progression and recurrence of endometriosis.

Acknowledgements

The authors wish to thank Nobuaki Misawa for excellent technical assistance with the pathologic specimens.

Disclosure statement

The authors declare that they have no competing interests.

Funding

This work was supported, in part, by a grant-in-aid for research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [24390094; 221S0001-04; 24108008; 16K15257].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.