341
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Chemical and biological basis for development of novel radioprotective drugs for cancer therapy

, , , , , & show all
Pages 828-858 | Received 15 Oct 2020, Accepted 09 Dec 2020, Published online: 28 Jun 2021
 

Abstract

Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.

Acknowledgments

The financial support from Department of Atomic Energy, Government of India is kindly acknowledged.

Disclosure statement

There are no actual or potential conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.