161
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The radical scavenger capacity and mechanism of prenylated coumestan-type compounds: a DFT analysis

& ORCID Icon
Pages 273-281 | Received 08 Jan 2022, Accepted 27 May 2022, Published online: 13 Jun 2022
 

Abstract

The antiradical capacity and mechanisms of two representative coumestan-type compounds, namely isosojagol (Iso) and phaseoul (Pha), were examined using quantum chemistry calculations and computational kinetics methods. From a thermodynamic point of view, the 18CH groups of the prenyl substituent have been found to be the most suitable sites for radical attacks via the formal hydrogen transfer (FHT) mechanism. However, the kinetic study revealed that the reaction at these CH groups is slow and does not contribute to the overall reactivity of these compounds, which the phenolic groups mainly define. The kinetic study also revealed that the studied compounds are good free radical scavengers with overall rate coefficients as high as recognized antioxidants such as carnosic acid, artepillin C, thymol, and rosefuran.

Acknowledgments

We would like to thank MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria) and DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique, Algeria), for financial support, as well as the HPC resources of UCI-UFMC (Unité de Calcul Intesif of the university Fréres Mentouri Constantine 1) for the computational resource used.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.