110
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of an Agonistic, Difluoro-Azido Photolabel of Angiotensin II and Labeling of the AT1 Receptor: Transmembrane Domains 3, 6, and 7 Form the Ligand-Binding Pocket

, , &
Pages 435-451 | Published online: 10 Oct 2008
 

Abstract

p-Azido-phenylalanine has been frequently used for photoaffinity labeling of target proteins such as the angiotensin receptors. However, chemical studies showed that simple aryl nitrenes first react intramolecularly, forming a semistable cyclic keteneimine and then reacting with nucleophile residues in the target structure like those of lysine and arginine. We synthesized 3,5-difluoro-4-azidophenylalanine where the formation of the keteneimine is prevented and where photoincorporation should be due to nonselective nitrene insertion only. This new amino acid was introduced in position 8 of angiotensin II and compared with the corresponding azidophenylalanine peptide using human AT1 receptor as target. The new photolabel maintained full agonist activity and a similar yield of photolabeling but without the previously observed gradual hydrolysis. Several selective proteolyses of the labeled receptor indicate that the new photolabel forms three simultaneous contact regions on the hAT1 receptor, suggestive of a nonselective behavior of the photolabel. A major contact was established in the sixth transmembrane domain but also in the third and seventh domain. Our results are in excellent agreement with those recently obtained from methionine proximity assay studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.