179
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Role of cholinergic agents in proliferation and caspase activity of hemin-induced erythroid differentiated K562 cells

ORCID Icon & ORCID Icon
Pages 42-48 | Received 22 Nov 2019, Accepted 29 Dec 2019, Published online: 07 Jan 2020
 

Abstract

Background: Muscarinic receptors have many functions in the cells and tissues. Acetylcholine (ACh) plays an important role in cellular physiology. ACh also acts at the different parts of the central nervous system and nonneuronal cells. Cholinergic receptors also have different functions in many cell types and tissues. Caspases (cysteine aspartic proteases and cysteine aspartases) are cysteine dependent aspartate-specific proteases. They are an important role in necrosis and cell death and inflammation signaling pathways. They are also the primary mediators of apoptosis. During apoptosis, different caspase types participate in different functions. We have previously shown that carbachol (CCh) inhibits K562 cell proliferation. This study was performed to investigate the anti-tumor efficacy of cholinergic drugs in hemin-induced erythroid differentiated K562 cells. The aim of this study was to address the mechanism of cholinergic drugs on hemin-induced erythroid differentiated K562 cell proliferation and caspase activities. We detected M3 muscarinic receptor expression in erythroid differentiated K562 cell line.

Methods: K562 cells were differentiated with hemin (50 μM). The expression of the M3 muscarinic receptor was detected by the western blotting technique. Erythroid differentiated K562 cells treated with CCh (100 μM). After 24 and 48 h, cells were counted by BrdU cell proliferation kit. Caspase 3,8, and 9 activities were measured by enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s instructions.

Results: Erythroid differentiated K562 cell proliferation was not significantly increased after CCh treatment. In the meantime, caspases 8 and 9 activities in erythroid differentiated K562 cell line was significantly higher than undifferentiated K562 cells (p < .05).

Disclosure statement

The authors of this article have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

Additional information

Funding

This study was supported by a grant from Marmara University Research Fund SAG-B-101013-0391.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.