183
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Silver and gold nanoparticles: Eco-friendly synthesis, antibiofilm, antiviral, and anticancer bioactivities

, , , , ORCID Icon &
Pages 470-482 | Published online: 23 Aug 2023
 

Abstract

For the first time in this study, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were green synthesized by the cost-effective and eco-friendly procedure using Cotton seed meal and Fodder yeast extracts. The biosynthesized NPs were characterized by UV–Vis spectroscopy, dynamic light scattering analysis (DLS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and fourier-transform infrared (FTIR) spectroscopy. Furthermore, the biosynthesized NPs were tested in vitro against biofilm formation by some pathogenic negative bacteria (Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., and Pseudomonas aeruginosa) and negative bacteria (staphylococcus aureus) as well as against human denovirus serotype 5 (HAdV-5) and anticancer activity using HepG2 hepatocarcinoma cells. UV–Vis absorption spectra of reaction mixture of AgNPs and AuNPs exhibited maximum absorbance at 440 nm and 540 nm, respectively. This finding was confirmed by DLS measurements that the highest intensity of the AgNPs and AuNPs were 84 nm and 73.9 nm, respectively. FTIR measurements identified some functional groups detected in Cotton seed meal and Fodder yeast extracts that could be responsible for reduction of silver and gold ions to metallic silver and gold. The morphologies and particle size of AgNPs and AuNPs were confirmed by the TEM and SAED pattern analysis. Biosynthesized AgNPs and AuNPs showed good inhibitory effects against biofilms produced by Escherichia coli, Proteus mirabilis, Klebsiella sp., Salmonella sp., Pseudomonas aeruginosa, and Staphylococcus aureus. In addition, they showed anticancer activities against hepatocellular carcinoma (HepG-2) and antiviral activity against human adenovirus serotype 5 infection in vitro. Finally, the results of this study is expected to be extremely helpful to nano-biotechnology, pharmaceutical, and food packing applications through developing antimicrobial and/or an anticancer drugs from ecofriendly and inexpensive nanoparticles with multi-potentiality.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.