286
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Covalently coupling doxorubicin to polymeric nanoparticles as potential inhaler therapy: in vitro studies

ORCID Icon
Pages 890-898 | Received 05 Mar 2021, Accepted 28 Jun 2021, Published online: 13 Jul 2021
 

Abstract

Lung cancer is the most commonly diagnosed type of cancer worldwide, non-small cell lung cancer accounts for most lung cancers. Doxorubicin is a widely used chemotherapy agent in lung cancer. However, the drug has several undesirable side effects. Here, doxorubicin coupled PEGylated mucoadhesive nanoparticles were designed as a doxorubicin delivery system for pH-triggered release in lung cancer therapy through inhaler administration. Firstly, alginate/chitosan nanoparticles were developed at optimum conditions. Then, PEG diacid bound to structures for doxorubicin binding and providing steric hindrance for phagocytosis. Doxorubicin was linked via an acid–labile amide bond to PEGylated nanoparticles and 444.3 ± 9.2 µg doxorubicin was loaded per mg nanoparticle. Doxorubicin coupled PEG diacid linked alginate/chitosan nanoparticles were checked with FTIR. Hydrodynamic diameter and zeta potential of nanoparticles were measured as 205.7 ± 15.0 nm and −25.17 ± 2.67 mV. The morphology of nanoparticles was evaluated as nearly spherical. Drug release studies were performed both in physiological and acidic media. The drug release from nanoparticles reached 23.6% (pH 5.5) and 18% (pH 7.4) within 48 h. The cytotoxicity experiments were done using A549-luc-C8 cells, also statistical analyzes were carried out. The MTT results indicated the designed drug delivery system possessed anti-tumor efficacy for non-small cell lung cancer therapy.

Graphical Abstract

Acknowledgment

I would like to acknowledge to Ege University Drug Development and Pharmacokinetics Research – Application Center (ARGEFAR). I would also thank to Buket Özel and Dursun Demiroz for helping with cell culture and statistical analyzes.

Disclosure statement

The author reports no conflict of interest. Patent application in the national area has been filed for this invention, which has been supported by Ege University (2020/19415).

Additional information

Funding

This work was supported by the Research Foundation of Ege University [Grant number, 17 FEN 014].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.