247
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Influence of Cellulose Ether Mixtures on Ibuprofen Release: MC25, HPC and HPMC K100M

, , , &
Pages 213-228 | Received 02 Jun 2005, Accepted 06 Jan 2006, Published online: 07 Oct 2008
 

Abstract

The influence of cellulose ether derivatives on ibuprofen release from matrix tablets was investigated. Raman spectroscopy and differential scanning calorimetry (DSC) experiments were used, in order to examine the compatibility between the matrix components: both excipients and ibuprofen. While both the DSC and Raman results did not detect any incompatibilities, DSC revealed the existence of some drug:excipient interactions, reflected by variations in the hydration/dehydration processes. Formulations containing mixtures of polymers with both low and high viscosity grades—methylcellulose (MC25) or hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K100M), respectively—were prepared by a direct compression method (using 20, 25, and 30% of either MC25 or HPC). The tablets were evaluated for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, surface area, and volume. Parameters such as the mean dissolution time (MDT) and the dissolution efficiency (DE) were calculated in all cases. The solid formulations presently studied demonstrated a predominantly Fickian diffusion release mechanism.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.